首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22107篇
  免费   3592篇
  国内免费   3061篇
化学   16447篇
晶体学   218篇
力学   2282篇
综合类   122篇
数学   1503篇
物理学   8188篇
  2024年   37篇
  2023年   269篇
  2022年   480篇
  2021年   922篇
  2020年   1133篇
  2019年   931篇
  2018年   736篇
  2017年   794篇
  2016年   1126篇
  2015年   982篇
  2014年   1163篇
  2013年   2100篇
  2012年   1355篇
  2011年   1322篇
  2010年   1159篇
  2009年   1341篇
  2008年   1444篇
  2007年   1507篇
  2006年   1360篇
  2005年   1153篇
  2004年   1009篇
  2003年   960篇
  2002年   720篇
  2001年   630篇
  2000年   575篇
  1999年   510篇
  1998年   466篇
  1997年   341篇
  1996年   311篇
  1995年   334篇
  1994年   320篇
  1993年   213篇
  1992年   190篇
  1991年   126篇
  1990年   102篇
  1989年   99篇
  1988年   77篇
  1987年   71篇
  1986年   54篇
  1985年   67篇
  1984年   46篇
  1983年   24篇
  1982年   36篇
  1981年   27篇
  1980年   27篇
  1979年   23篇
  1978年   17篇
  1977年   11篇
  1976年   13篇
  1957年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Selective polymer wrapping is a promising approach to obtain high‐chiral‐purity single‐walled carbon nanotubes (SWCNTs) needed in technical applications and scientific studies. We showed that among three fluorene‐based polymers with different side‐chain lengths and backbones, poly[(9,9‐dihexylfluorenyl‐2,7‐diyl)‐co‐(9,10‐anthracene)] (PFH‐A) can selectively extract SWCNTs synthesized from the CoSO4/SiO2 catalyst, which results in enrichment of 78.3 % (9,8) and 12.2 % (9,7) nanotubes among all semiconducting species. These high‐chiral‐purity SWCNTs may find potential applications in electronics, optoelectronics, and photovoltaics. Furthermore, molecular dynamics simulations suggest that the extraction selectivity of PFH‐A relates to the bending and alignment of its alkyl chains and the twisting of its two aromatic backbone units (biphenyl and anthracene) relative to SWCNTs. The strong π–π interaction between polymers and SWCNTs would increase the extraction yield, but it is not beneficial for chiral selectivity. Our findings suggest that the matching between the curvature of SWCNTs and the flexibility of the polymer side chains and the aromatic backbone units is essential in designing novel polymers for selective extraction of (n,m) species.  相似文献   
992.
Reactive acrylate esters were encapsulated in the cavity of networked molecular capsules in a single‐crystal‐to‐single‐crystal fashion. Owing to the encapsulation effect, acrylates inside the capsules do not undergo polymerization upon irradiation with UV light or heating, while the guest molecules can be quantitatively extracted by treatment with toluene.  相似文献   
993.
994.
We investigated thermo-mechanical properties of thoria up to a very high temperature (3300 K). We demonstrate that, using first-principles molecular dynamics, it is possible to predict thermal expansion of thoria in agreement with experiment. The new generalized gradient approximation functional within the density functional theory predicts, in agreement with experiment, not only the relative thermal expansion but also the absolute values of the lattice constant as a function of temperature. The molecular dynamics approach has an advantage over the previously used quasi-harmonic method, because it can be used even at temperatures (above 2700 K) where the longitudinal optical mode breaks in thoria. The calculated phonon dispersion agrees well with the experimental relation, measured using inelastic neutron scattering. The temperature, at which the negative frequency in the optical mode appears, coincides with the λ-type pre-melting transition reported in thoria.  相似文献   
995.
Cucurbit[7]uril (CB[7]), an uncharged and water‐soluble macrocyclic host, binds protonated amino saccharides (D ‐glucosamine, D ‐galactosamine, D ‐mannosamine and 6‐amino‐6‐deoxy‐D ‐glucose) with excellent affinity (Ka=103 to 104 M ?1). The host–guest complexation was confirmed by NMR spectroscopy, isothermal titration calorimetry (ITC), and MALDI‐TOF mass spectral analyses. NMR analyses revealed that the amino saccharides, except D ‐mannosamine, are bound as α‐anomers within the CB[7] cavity. ITC analyses reveal that CB[7] has excellent affinity for binding amino saccharides in water. The maximum affinity was observed for D ‐galactosamine hydrochloride (Ka=1.6×104 M ?1). Such a strong affinity for any saccharide in water using a synthetic receptor is unprecedented, as is the supramolecular stabilization of an α‐anomer by the host.  相似文献   
996.
Sensors play a significant role in the detection of toxic species and explosives, and in the remote control of chemical processes. In this work, we report a single‐molecule‐based pH switch/sensor that exploits the sensitivity of dye molecules to environmental pH to build metal–molecule–metal (m‐M‐m) devices using the scanning tunneling microscopy (STM) break junction technique. Dyes undergo pH‐induced electronic modulation due to reversible structural transformation between a conjugated and a nonconjugated form, resulting in a change in the HOMO–LUMO gap. The dye‐mediated m‐M‐m devices react to environmental pH with a high on/off ratio (≈100:1) of device conductivity. Density functional theory (DFT) calculations, carried out under the non‐equilibrium Green’s function (NEGF) framework, model charge transport through these molecules in the two possible forms and confirm that the HOMO–LUMO gap of dyes is nearly twice as large in the nonconjugated form as in the conjugated form.  相似文献   
997.
Porous organic frameworks perform a variety of functions, owing to their extremely large surface areas, but the dynamics of the structural elements have never been explored. Our discovery of ultra‐fast molecular rotors (106 Hz at 225 K) in their architectures allows us to look at them from a new perspective. The constructive elements are robust struts and rapid rotors, resulting in a dynamic material whose motion can be frozen or released at will. The rotational motion can be actively regulated in response to guests. As the temperature is increased, the rotors spin ever faster, approaching free‐rotational diffusion at 550 K. The unusual combination of remarkable nanoporosity with fast dynamics is intriguing for engineering oscillating dipoles and producing responsive materials with switchable ferroelectricity, and for applications spanning from sensors to actuators, which capture and release chemicals on command.  相似文献   
998.
Transmembrane anion carriers (anionophores) have potential for biological activity, including the treatment of channelopathies such as cystic fibrosis. A new family of anionophores has been synthesized, in which three thiourea groups are mounted on a cyclohexane‐based scaffold. Though conceptually related to earlier polycyclic systems, these molecules are simpler and far more accessible. Preorganization is somewhat reduced compared to earlier systems, and anion affinities are correspondingly lower. However, transport activities set new records. This surprising performance suggests a role for controlled flexibility in the design of transmembrane anion carriers.  相似文献   
999.
An odor‐based sensor system that exploits the metabolic enzyme tryptophanase (TPase) as the key component is reported. This enzyme is able to convert an odorless substrate like S‐methyl‐L ‐cysteine or L ‐tryptophan into the odorous products methyl mercaptan or indole. To make a biosensor, TPase was biotinylated so that it could be coupled with a molecular recognition element, such as an antibody, to develop an ELISA‐like assay. This method was used for the detection of an antibody present in nM concentrations by the human nose. TPase can also be combined with the enzyme pyridoxal kinase (PKase) for use in a coupled assay to detect adenosine 5′‐triphosphate (ATP). When ATP is present in the low μM concentration range, the coupled enzymatic system generates an odor that is easily detectable by the human nose. Biotinylated TPase can be combined with various biotin‐labeled molecular recognition elements, thereby enabling a broad range of applications for this odor‐based reporting system.  相似文献   
1000.
UDP‐glucose:glycoprotein glucosyltransferase (UGGT) plays a key role in recognizing folded and misfolded glycoproteins in the glycoprotein quality control system of the endoplasmic reticulum. UGGT detects misfolded glycoproteins and re‐glucosylates them as a tag for misfolded glycoproteins. A flexible model to reproduce in vitro folding of a glycoprotein in the presence of UGGT in a mixture containing correctly folded, folding intermediates, and misfolded glycoproteins is described. The data demonstrates that UGGT can re‐glucosylate all intermediates in the in vitro folding experiments, thus indicating that UGGT inspects not only final folded products, but also the glycoprotein folding intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号